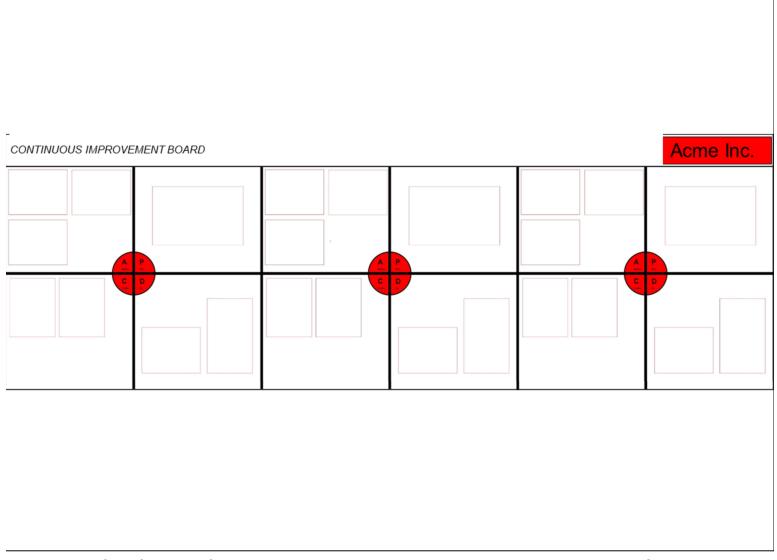

IOR TASK	Tentino 1 2 2													
JOB TASK:	Testing 1, 2 , 3								 E			03	/ 20	
APRAISER:	Jane and Jon Doe							DATI						B /_17
APRAISER: OPERATOR:	Jane and Jon Doe Jon Doe									:		<u>03</u>		B / 17
APRAISER: OPERATOR: LOCATION:	Jane and Jon Doe				 TAS	SK DI		DATI	ΓE	:	Cur	rrei	nt	<u>3_/_17</u>
APRAISER: OPERATOR: LOCATION: TASK STEP	Jane and Jon Doe Jon Doe	MAN			TAS	GK DI	STA	DATI	ΓE	:	Cur	rrei	nt	8 / 17
APRAISER: OPERATOR: LOCATION:	Jane and Jon Doe Jon Doe Quality Lab	MAN H	ITASE M	CTIME S	TAS		STA	DATI	ΓE	: :	Cur	rrei	nt	
APRAISER: OPERATOR: LOCATION: TASK STEP	Jane and Jon Doe Jon Doe Quality Lab				TAS		STA	DATI	ΓE		Cur O TA	rrei	пт	
APRAISER: OPERATOR: LOCATION: TASK STEP	Jane and Jon Doe Jon Doe Quality Lab TASK DISCRIPTION	Н			TAS		STA	DATI	ΓE		Cur O TA	rrei	пт	NOTES
APRAISER: OPERATOR: LOCATION: TASK STEP	Jane and Jon Doe Jon Doe Quality Lab	Н			TAS		STA	DATI	ΓE		Cur O TA	rrei	пт	
APRAISER: OPERATOR: LOCATION: TASK STEP	Jane and Jon Doe Jon Doe Quality Lab TASK DISCRIPTION	Н			TAS		STA	DATI	ΓE		Cur O TA	rrei	пт	NOTES

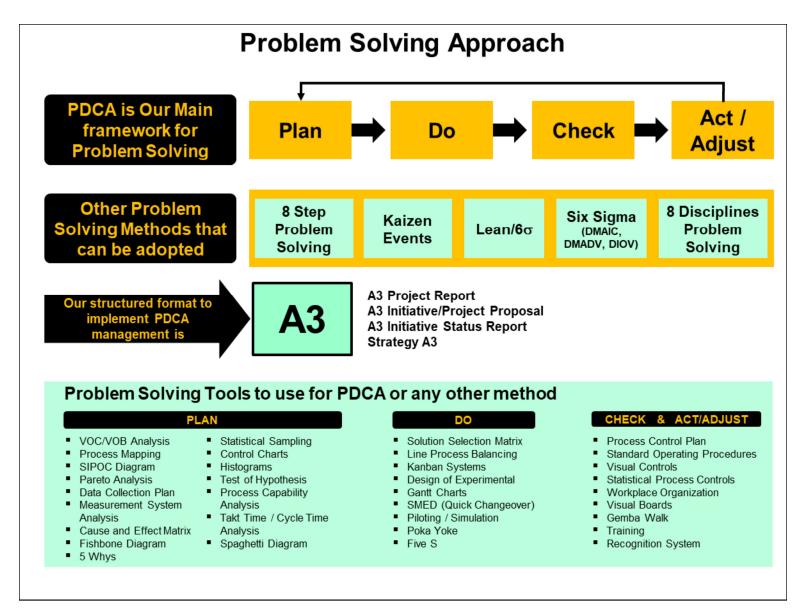
Current state spaghetti map diagram of a quality lab testing procedure. Stacking this up by multiplying by shift, by day, by week, by month, by year it quickly went into miles per year that the lab technician walked doing this testing procedure – 370 miles per year! 30 days!

Googling mapping this distance it was the equivalent of walking from Greenville, SC to Myrtle Beach, SC and 1/4 of the way back again. A lot of walking.

JOB TASK:	Testing 1, 2, 3														
APRAISER:	Jane and Jon Doe									DATE	Ε	:			9_/_17
OPERATOR:	Jon Doe									STAT	Έ	:	Futu	re	
LOCATION:	Quality Lab			_											
							TAS	K DIS	STA	NCE	Τ.				
TASK STEP	TASK DISCRIPTION	MAN	MAN TASK TIME					FE	ET		'	AUTC	O TASK TIME		NOTES
NO.		Н	M		S	П	Т	Т	Τ		\top	Н	М	S	1 I
	Days non your	2 7					_	_	2						Miles per year
	Days per year This represents a reduction of 3	2 7		L					2	0 8	3				Miles per year This represents a reduction of 162
	Days per year This represents a reduction of 3 days a 10% improvement	2 7							2	0 8	3				Miles per year This represents a reduction of 162 miles per year a 43% improvement


Future state spaghetti map diagram of a quality lab testing procedure. We analyze this quite thoroughly and thought of maybe this could be improved by a sequencing algorithm or perhaps U shaped cellular modification of the work area to form a lead-in lead-out arrangement. This is a classical example of how a Kaizen can be done. We simply re-arranged the test benches and computer desks, moved some of the other test equipment and shaved off 208 miles per year and 3 days. No money fun improvement! The only investment – brainpower... I really enjoyed leading these people to their own success story...

In this Kaizen there were unexplained machine jams

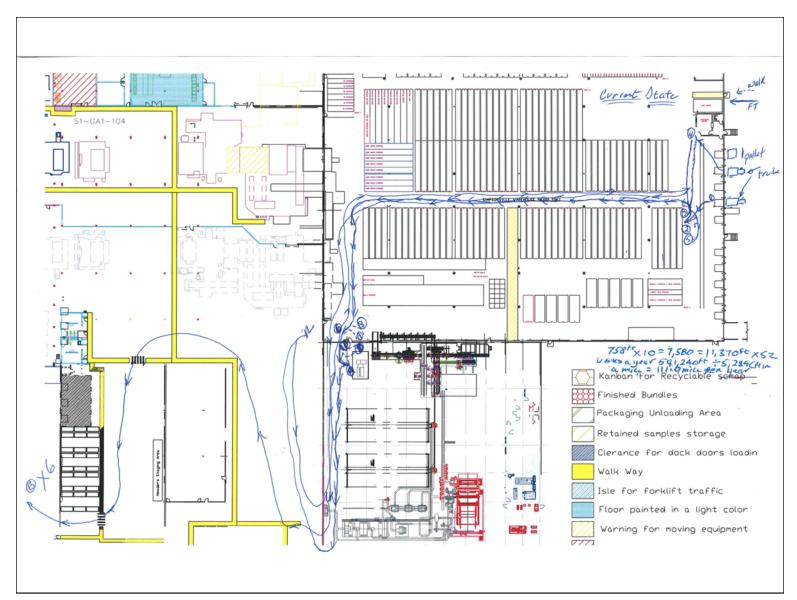

Object of Kaizen Event	:			
Learn the pracess *Understand the problem * what *Determine and verify roat caus *Verify permanent carrections a *Define and Implement Carrecti *Prevent recurrence *Cangratulate the team * what d	els ections for the problem that uill resolv we Actions lidue learn	oderår af the Line 6 Hammer Mille o praklem far ur endfar far the curtame	0.	
Step 1: State the	Problem			
Problem Statement	The Pulp Rull Sheet Sumeti	mor Staps Fooding into the He	mar Hill	CFL Humber If Applicable
			proposition(S)	Nat applicable
Size			Impact	
because of the above problems (equipment related) Affect avail Thir har been a problems ince line	rtatomont oqualing 16% af the tatal Ilability af the azzot and dawnetroamp oztartup.	ated to 14 hours of unplanned dountime for all unplanned dountime for Line 6 racesses.	☐ Safety: (right dids, saled edit text) ☐ Cast: (right dids, saled edit text) ☐ Customerit: quality issue ☐ Cither: (right dids, saled edit text)	
Step 2: Understa	nd the Problem		,	
WHAT	15	Could Be, But IS NOT	between the IS and the IS NOT?	What has changed?
The pulp rell sheet and the problem is observed	o ir after the nipr ralls of the Hamme Mills at a distance of 125 to 155 mm after the nip ralls.	immediatoly upstream ar daunetream af the Hammer Hill itzelf.	This is the point at which the pulp roll sheet is metered has limited degree of freedom into clarer fits in quider rolls and tooling plates to feed it into the Hammer Mill funnelsystem.	
The pulp rail sheet and th prablem is abserved	e recorded at accurring at the lawe nip ralle for all Hammer Mille 96% a the problem etatement	at the upper nip rails must of the accurrences	to be determined - OEM is retrafitting the food funnel system on all lawer foods - it's passible the the acute angle (lass than 90) that the pulp roll shoot has to articulate is more that the inherent material harstrongth to foodstraight.	
Material alignment	ir a alignment of the pulp roll sheet from just after nip rolls in the laters plane with the feed funnel or alignment of the lateralplane of the pulp roll sheet that are stacked or top of each other		There is no evidence that the material sheets are separating in the parallel plan alignment.	Na change.
Material quality.	b related to material should the material not matching specified density, width, thickness, edge of surface quality.	ir natrolated to quality of the pulp roll sheet.		There has been no change i materialspecifications.
Machino rolated.	br related to machine performance and correct rettings an adjustment.	Hatrolated ta the actual Hammer Mill I grinding rection.	The problem occurs before the Hammer Mill grindingsection.	There have not been any derig changer or changer in the location of the problem
∀ HERE	IS	Caeld Bo, Bet IS HOT	What is different between the IS and IS MOT?	What her changed?
Martly on the lower feed funne on Hommer Mills 183A	ll accurring an the lawer feed funnel	an the upper feed funnel far mart of the time. 98% of the problem statement occurs at the lower feed funnels	pulp rall shoot to the inlet of the	

I was experimenting with different methods and types of problem solving processes and this was one that I used which was close to the 8D problem solving method. After 25 years of problem solving I've been on the lookout for one universal tool to fit all, but one doesn't exist. My conclusion; it all depends on the problem at hand. Just like different fire extinguishers have to be used for different fires, I have found out the same if true of problems...

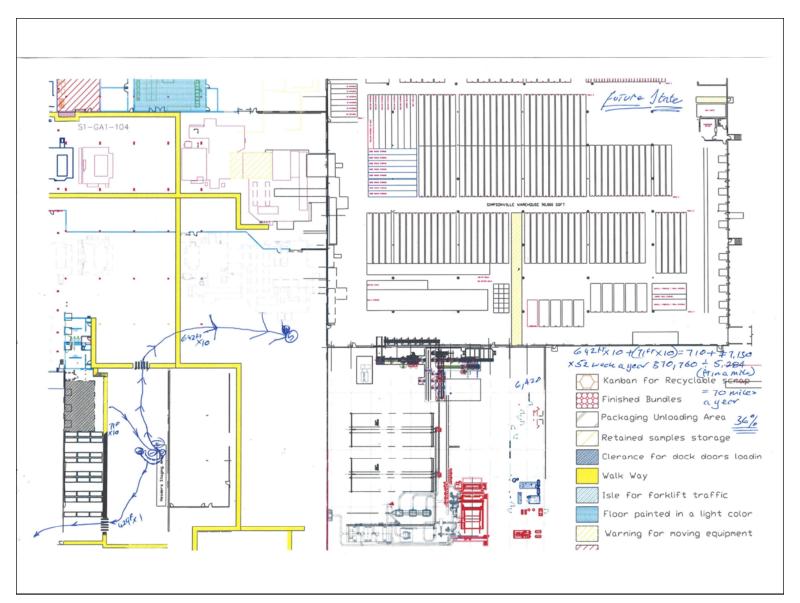
My design of a 4 feet X 12 feet Kaizen Report Board. It's very important to stress the PDCA management iteration in every thing you do – remember: Plans are useless; planning in invaluable...

We all do a good job on the Planning and Doing, but not so good on the Checking and Adjusting. They are have the same weight. The Check and Adjusting is crucial to the closed loop of the Deming Cycle...

This is my model of the PDCA process. ACT / ADJUST are interchangeable depending on the situation under study...



OB TASK:	Delivery of raw materials to sho	p fl	loo	r	—		_						—	—						
PRAISER:	Jane and Jon Doe	F 11											DA	TE		:		14_/	1	12_/_17
PERATOR:													STA	ΔTE		: (Curr			
OCATION:	Production 1 Machine 1																			
TASK STEP NO.	TASK DISCRIPTION	M	IAN	TA:	SK	TIM	IE		TA		DIS FEE		IČE		AU	AUTO TASK TIM				NOTES
		Н	\prod	N	Л	,	S				L				Н		М	Ι	S	
														- 1	_					
0 5	Minutes per year		\exists	2,	0	8	1	2	9,	0	3	8	4	4				Ι	Ι	Feet per year
0 5	Minutes per year			2,	0	8	1	2	9,	0	3	8	4	4					Ι	Feet per year
0 5	Minutes per year			2,	0	8	1	2	9,	0	3	8	4	4						Feet per year
				2,					9,	0										
0 6	Minutes per year			2,		5			9,	0			9							Feet per year Miles per year
				2,					9,	0										


This was the current state of taking raw bales materials from warehouse location to the side line storage location. Extrapolated distance per year 6,000 miles. That's a lot of miles!

JOB TASK:	Delivery of raw materials to sho	p fl	00	r								_	_								
APRAISER:	Jane and Jon Doe										DATE :				04 / 12 / 17						
OPERATOR:															:	Fut	ure	10	Option 1		
LOCATION:	Production 1 Machine 1																				
TASK STEP	TASK DISCRIPTION		ΑN	TAS	K TI	ME		TA	ASK	DIS FEE		CE		AU	тс) TA	SK 1	TIME	NOTES		
NO.		Н		M		S	Τ	Τ						Н		N	1	S			
0 5	Minutes per year	1,	0	8	5 (0 1	2	, 5	6	8,	3	8	4						Feet per year		
0 6	1,808 Hours per year This representas a 6% reduction in time			1,	8 (0 8					4	8	6						486 Miles per year This represents a 92% reduction if all Kaizens are made per future state - see Materials Flow Kaizen A3 action tasks		

This was the future state of taking raw bales materials from warehouse location to the side line storage location. Extrapolated distance per year 400 miles. This does involve the capital project of installing a gravity feed conveyor through the partition wall to the pick point line side storage potentially resulting in a 92% reduction in distance.

This is a Kaizen warehouse raw materials for header receiving current state spaghetti diagram. Calculated distance here was the equivalent of driving a fork lift truck from Greenville, SC to Columbia, SC and back some a year...!

This is a Kaizen warehouse raw materials for header receiving future state spaghetti diagram. Calculated distance here was the equivalent of driving a fork lift truck from Greenville, SC to Columbia, SC and back some a year...! We simply changed the receiving dock location to the other side of the plant and change the warehouse storage location of the header. 36% reduction in distance traveled. Fork lift truck wear, time etc. etc. savings...